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Within the scalar-tensor theory of gravity with Higgs mechanism without Higgs 
particles, we prove that the excited Higgs potential (the scalar field) vanishes 
inside and outside of stellar matter for static, spherically symmetric configurations. 
The field equation for the metric (the tensorial gravitational field) turns out to 
be essentially the Einsteinian one. 

1. I N T R O D U C T I O N  

A scalar-tensor theory of gravity was developed by Brans and Dicke 
(1961) in order to introduce some foundation for the inertial mass as well 
as the active and passive gravitational mass (i.e., the gravitational 'constant') 
by a scalar function determined by the distribution of all other particles in 
the universe; the background of  this is Mach's principle and the principle 
of equivalence. 

This introduction of  mass by a scalar field can now be regarded as a 
somehow prophetic approach, because in today's Standard Model of  particle 
physics the masses of  the elementary particles are generated via the Higgs 
mechanism, thus using also a scalar field, the Higgs field. The scalar interac- 
tion mediated by the Higgs field was investigated by Dehnen et al. (1990, 
see also Dehnen and Frommert, 1991). They showed that any excited Higgs 
field 2 mediates an attractive scalar interaction 3 of  Yukawa type (i.e., short 
range) between those particles, which acquire mass by the corresponding 
symmetry breaking (i.e., the fermions and the massive Wand Z gauge bosons). 

I Department of Physics, University of Constance, D-78434 Konstanz, Germany; e-mail: Hart- 
mut.Frommert@ uni-konstanz.de. 

2The quanta of this excited Higgs field are the hypothetical Higgs particles. 
3This interaction is similar to gravity because it couples to the masses of the particles. 
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The Higgs field of particle physics can also serve as the scalar field in a 
scalar-tensor theory of gravity, as was first proposed by Zee (1979) and more 
deeply investigated by Dehnen et  al. (1992). In this theory, in addition to its 
role in the Standard Model of making the particles massive, the scalar Higgs 
field also generates the gravitational constant G. Surprisingly, however, if 
the Higgs field of the SU(3) • SU(2) • U(1) Standard Model of elementary 
particles is employed to generate G, the Higgs field loses its source, i.e., can 
no longer be generated by fermions and gauge bosons unless in the very 
weak gravitational channel. 

The reader can find the whole formalism of this theory in Dehnen ~ d  
Frommert (1993). 

2. STATIC, SPHERICALLY SYMMETRIC SOLUTIONS OF THE 
H I G G S  SCALAR-TENSOR THEORY 

For the excited Higgs field q~, one obtains the following homogeneous, 
covadant Klein-Gordon equation (Dehnen and Frommert, 1993)4: 

~l"ll ~ + M2~  = 0,  ~ = (1 + qo) 2 - 1 (1)  

where M denotes the mass of the Higgs particles in this theory. The field 
equation for the metric as the tensorial gravitational field reads 

R~, - ~ Rg~  = 1 + ~ T~, + 4(1 + ~------~ ~'~f;'~ - 2 f;'x~'~g~ + V(~)g~, 

1 
1 + ~ [~11~11~ - -  ~lXllXgp.v] (2) 

with the Ricci tensor R . ,  and the Higgs potential 

3 M2(1 + 4"rr/~2 ~ 3M2 62 (or = 1033) 
V(O - 32"trG 3otJ 32"tr-'---'G 

(3) 

T~ is the energy-momentum tensor of matter. 
We now look for the exact solution of this equation for the spherically 

symmetric and time-independent case. This means that the excited Higgs 
field is a function of the radius r only, and the metric has the form 

~ ~ ~ 1 
0 - e  ~(r) 0 0 

g~v = 0 0 - r  2 0 (4) 
0 0 0 - r  E sin2~ 

4Throughout this paper we use h = c = 1 and the metric signature (+ - - - ) .  The symbol 
(...)~ denotes the partial, (.. ")U~ the covariant derivative with respect to the coordinate x ~. 
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Using the Christoffel symbols and the Ricci tensor components following 
from the metric (4) (see, e.g., Landau and Lifshitz, 1992, w Tolman, 
1934, w the nontrivial field equations for the metric read (primes denote 
derivatives with respect to the radial coordinate r, and L = l/Mis the Compton 
wavelength corresponding to the Higgs mass M) 

_ [1/'  pl2 pt ht 1)"~ 
R00=-e + 7  + r) 

1 + ~  4"rrG(p+3p)e x -  2 + 1 - ~  e x 

P" V '2 v'~.' ~.' 
RII = "2 "q- 4 4 r 

_ 1 -4"rrG(p - p)e  x - ( '  + + 1 - ~ e x 
1 + ~  2 

r s 
R 2 2 = e  - x -  1 + ~ ( v  - k ' ) e  -x 

- 1+~1 4"trG(p - p ) r  2 + r~'e - x  - ~ ~ - -~ 

(5) 

(6) 

(7) 

and the scalar field equation (1) takes the form 

d r  2 2 drr [v(r) - k(r)l dr  (8) 

Because of a continuous and finite matter density, i.e., no singularities such 
as matter points or infinitely thin massive surfaces, we are looking for an 
exact solution for ~(r) of this equation which is finite and continuous together 
with its first derivative. 

We can immediately find the exact solution of equation (8) if the metric 
is the Minkowskian one (perhaps with some constant coordinate transforma- 
tion). This should be a good approximation for the limit of large distances 
from the star (r > >  R, where R is the radius of the star) in the static 
case. Equation (8) then gets linearized and becomes the usual Klein-Gordon 
equation for a static, spherically symmetric field: 

d2~(r) + 2 d~(r) M2~(r) = 0 (9) 
dr  2 r d r  
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The bounded solution of  this equation is the Yukawa function 

A e - r / L  
~(r) -- - - ,  r > >  R (10) 

r 

with A an arbitrary real constant; this is the asymptot ic  solution for  all finite, 
spherically symmetr ic  sys tems for  large values of  r which are asymptot ical ly  
embedded  in flat Minkowski  spacetime.  The  absolute value of  this solution 
is exponential ly d e c r e a s i n g  as r ---> ~ .  

On the other hand, the spacet ime metric  is also asymptot ical ly  equivalent  
to the fiat Minkowskian  one for  the l imiting case 5 r ---> 0. Therefore,  the 
scalar field near  r = 0 should be given asymptot ical ly  again by  a solution 
of  equation (9); in this case, the solution should behave  regularly at r = 0 
to avoid singularities. The  regular solution at r = 0 of  (9) is g iven by  

~(r)  - B s i n h ( r l L )  , 0 - -  < r < <  R (11) 
r 

(B is another  arbitrary real constant),  the absolute value of  which has a 
m i n i m u m  at r = 0 and is i n c r e a s i n g  outward.  

In addition, we can discuss the limiting case for  small  values of  r more  
accurately: For  the interior solution near  the origin at r = 0 it is convenient  
to rewrite the field equation (8) after multiplication with r" 

r ~ , , +  [1  + r ] r ~ (p '  -- k ' )  ~' = ~ M2eX(r)~ (12) 

Obviously,  for  nonsingular  fields, ~ ' ( r)  must  vanish at r = 0. Taylor-expanding 
~(r) as ~(r) = ~0 + ~lr  + ~2 r2 + " ' "  yields 

~ = 0 (13) 

M 2 
~2 = - ~ - e ~ ~  [k0 = k ( r  = 0)] (14) 

which shows that the second derivat ive ( '  o f  the scalar field ~ has the same 
sign at the origin r = 0 as ~(r = 0). 

I f  ~0 = ~(r = 0) is not zero, i.e., ~ does not vanish identically, its absolute 
value anyway  increases outward f rom the center, i.e., i f  ~0 is positive, 

5 This follows immediately from the requirement that for our spherically symmetric configuration 
the fields should be differentiable if one considers an arbitrary straight line through the origin: 
As our fields, v, h, and ~ must be spherically symmetric, they must be even functions of the 
distance from the origin on this line, and thus have vanishing derivatives at r = 0, which 
makes the connection coefficients vanish. It also follows as the limiting case of a corollary 
based on Birkhoff's theorem that the metric inside an empty central spherical cavity of radius 
Ri in a spherically symmetric system is equivalent to the fiat Minkowsld metric for Ri --) 0. 
This corollary is treated, e.g., in Weinberg (1972), and is also valid in our scalar-tensor theory. 
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increases, and if it is negative, it decreases outward. One could expect that 
the complete exact solution of equation (8) would have a maximum for every 
A > 0 in equation (10) or B > 0 in (11), because it grows when starting 
from r = 0 and vanishes exponentially as r ---> oo. On the other hand, its first 
derivative would vanish at this extremal point, and then equation (8) would 
force the same sign on the solution ~(r) and its second derivative. Because 
the function ~(r) is positive, one would obtain a minimum and not a maximum 
at this point. For A < 0 or B < 0, we have the analogous situation: one 
expects at least one minimum and gets only a maximum. Therefore, one 
cannot get the asymptotically bounded exterior solution (10) from any nontriv- 
ial solution which behaves regularly near r = 0. Thus the only physically 
permitted static solution is ~(r) - 0, with the constants A = 0 and B = 0 
for the asymptotic solutions. 

3. CONCLUSIONS 

We have shown that the only physically permitted solution for a static, 
spherically symmetric configuration in our theory is the trivial one with 
respect to the scalar field. Therefore, the gravitational tensor field equation 
becomes an ordinary Einstein equation, so that all calculations for astronomi- 
cal objects obtained from Einstein's general relativity remain valid. Of course, 
this approach is only manifest for the exactly spherically symmetric and static 
case without poinflike singularities, and it does not cover highly dynamic 
systems (e.g., cosmological models or black holes). Yet it is a good approxima- 
tion for a great many "normal" objects such as stars, or perhaps all closed 
systems, e.g., our solar system; for all these our fundamental result should 
be valid. 

As the physical world is dynamic, however, there remains the possibility 
of dynamic solutions which asymptotically fit a cosmological background 
(see, e.g., Frommert et al., n.d.). This may be of  interest in the context of 
the dark matter problem. 

ACKNOW L E D GMENTS 

The authors are thankful to Heinz Dehnen, Sokratis Rahoutis, and Holger 
Schoor for helpful hints and discussions. 

REFERENCES 

Brans, C., and Dicke, R. H. (1961). Mach's principle and a relativistic theory of gravitation, 
Physical Review, 124(3), 925. 



662 v. Styp Rekowski and Frommert 

Dehnen, H., and Frommert, H. (1993). Higgs-me~hanism without Higgs-particle, International 
Journal of Theoretical Physics, 32(7), 1135. 

Dehnen, H., Frommert, H., and Ghaboussi, F. (1990). Higgs field gravity, International Journal 
of Theoretical Physics, 29(6), 537. 

Dehnen, H., and Frommert, H. (1991). Higgs field gravity within the standard model, Interna- 
tional Journal of Theoretical Physics, 30(7), 985. 

Dehnen, H., Frommert, H., and Ghaboussi, F. (1992). Higgs-field and a new scalar-tensor 
theory of gravity, International Journal of Theoretical Physics, 31(1), 109. 

Frommert, H., Schoor, H., and Dehnen, H. (n.d.). The cosmological background in the Higgs 
scalar-tensor theory without Higgs particles, to be published. 

Landau, L. D., and Lifshitz, E. M. (1992). Klassische Feldtheorie, 12th German ed., Akademie 
Verlag, Berlin. 

Toiman, R. C. (1934). Relativity, Thermodynamics and Cosmology, Oxford University Press, 
Oxford. 

Weinberg, S. (1972). Gravitation and Cosmology: Principles and Applications of the General 
Theory of Relativity, Wiley, New York, p. 338. 

Zee, A. (1979). Broken-symmetric theory of gravity, Physical Review Letters, 42(7), 417. 


